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1. INTRODUCTION

In this article, we develop solution methods for two-level
uncapacitated facility location problems with single assign-
ment constraints (TUFLPS). These problems generalize the
uncapacitated facility location problem (UFLP) [22], which
consists in selecting a set of depots from potential locations to
minimize the sum of fixed costs associated with each depot
and transportation costs between depots and customers. In
TUFLPS, the single set of depot locations is substituted with
two tiers of locations (major and minor depots) and the path
to each customer must begin at one major depot and transit
by one minor depot. In addition, each minor depot can be
connected to at most one major depot; these are the single
assignment constraints. These constraints appear in a num-
ber of applications, most notably in transportation [37] and
telecommunications [9]. Note also that, for a large class of
two-level UFLPs for which the single assignment constraints
are not explicitly enforced, these constraints can be satisfied
in an optimal solution due to the structure of the objective
function (see Section 2 for a more detailed discussion).

We consider TUFLPS with nearly arbitrary cost func-
tions. In the classical TUFLPS, the cost function includes
fixed costs associated with the depots and transportation costs
between nodes at each level. In addition to the classical
TUFLPS, we study a variant of TUFLPS suggested to us
by a multichannel retail company [13]. The company sells
a wide range of products (clothes, electronic devices and
appliances) via its website, mail-order catalogs and physi-
cal stores. One of the main logistical challenges it faces is to
adapt its distribution system to demands that vary daily, to
meet its service level guarantees (i.e., a maximum delivery
period of 24 h) while minimizing total cost. Consolidation is
a major concern: most delivery items are small or medium-
size parcels. The company addresses this challenge through
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a multilevel distribution architecture with single sourcing. Its
operations are based in a few fixed primary facilities (cen-
tral warehouses) owned by the company. A fleet of large
vehicles delivers parcels from these primary facilities to
cross-docking terminals (major depots) rented by subcontrac-
tors. Medium-size vehicles depart from these terminals and
transfer parcels to smaller, impromptu, cross-docking termi-
nals (minor depots), such as parking lots, where the items are
sorted into preassigned tours for final delivery to customers.

We assume that the primary facilities have been located by
a prior strategic planning process and that customers are pre-
assigned to routes. We are thus concerned with determining,
for each delivery period (i.e., one day), the major depots and
minor depots to use, and the path taken by the items deliv-
ered in each final tour. We model the transportation costs for
individual arcs with modular costs that take into account the
distance travelled and the capacity of the vehicles; a fixed
cost is associated with the use of each major depot; minor
depots only incur costs for each batch of parcels sorted at a
given minor depot, which are also represented with modular
costs. Note that this problem differs significantly from the
ones considered in the literature, since the objective function
involves modular costs at some of the arcs (represented by
the number of vehicles used on the arcs) and at some of the
nodes (corresponding to the number of product batches at the
minor depots).

Multilevel location analysis is a central research theme
in supply chain management [28]. Most real-life applica-
tions lead to more complex problems than those addressed
in this article, since they include multiperiod and multicom-
modity aspects (see, for instance, [2, 17, 36]). If we restrict
ourselves to two-level UFLPs (with or without single assign-
ment constraints), there is an abundant literature as illustrated
by recent surveys [20, 35]. Two main types formulations are
considered: arc-based [26, 32, 33] and path-based models
[4, 12, 18, 34]. Most authors propose exact solution meth-
ods based on Lagrangean relaxation [5, 27, 32, 33] and on
strengthening the models with valid inequalities and facets
[1, 9, 23]. Some researchers compare relaxations for the
arc-based and path-based formulations [7–9, 27]. Heuris-
tic methods based on Lagrangean or linear programming
(LP) relaxations have been developed [6, 32, 33], while other
heuristic approaches rely on greedy strategies or on sim-
ple neighborhood search methods based on add, drop or
exchange moves [4, 29, 31, 42]. To the best of our knowl-
edge, there are very few attempts to solve two-level UFLPs
with metaheuristics. A simulated annealing method is pre-
sented in [9], while a tabu search algorithm is described in
[38].

The real-life variant of the TUFLPS we consider here was
introduced in [13]. The arc-based and the path-based formu-
lations for this problem were compared, showing that the LP
relaxation of the path-based model provides more effective
lower bounds, but also that large-scale instances cannot be
solved in a reasonable time by a state-of-the-art commercial
solver. This motivates the development of heuristic methods
capable of finding provably good solutions to large-scale real

instances in short computing times. This article introduces
such a heuristic algorithm based on a variant of the variable
neighborhood search (VNS) metaheuristic [14, 30] called the
multilayer VNS (MLVNS).

The contribution of this article is threefold. First, this arti-
cle introduces the MLVNS, which consists in partitioning the
neighborhood structures into multiple layers. For each layer
l, a VNS defined on the associated neighborhood structures
is invoked, each move being evaluated and completed by a
recursive call to the MLVNS at layer l − 1. Such a decom-
position turns out to be quite natural when neighborhood
structures can be classified according to their complexity.
Simple neighborhood structures are assigned to the first
layers, while complex neighborhood structures are divided
between the last layers, given that the search in layer 1 is fre-
quently invoked due to the recursive nature of the approach.
Second, an adaptation of the MLVNS is proposed to solve
efficiently large-scale instances of TUFLPS. We apply the
method to the classical TUFLPS and to the TUFLPS with
modular costs derived from the real application described
above. Third, to assess the performance of the MLVNS, we
compare it to the solution of path-based models using a
state-of-the-art commercial solver, as well as to slope scaling
heuristics that we developed based on the approach presented
in [19]. Both the models and the slope scaling heuristics are
adapted to each of the two problems we consider, the classical
TUFLPS and the TUFLPS with modular costs.

The article is organized as follows. In Section 2, we
describe the class of TUFLPS we consider and specify the
properties of the cost functions. In Section 3, we first describe
the MLVNS and then show how a heuristic method based
on MLVNS can be devised for TUFLPS. Section 4 presents
the path-based models and the adaptations of the slope scal-
ing heuristics we developed to assess the performance of the
MLVNS. Computational results for the classical TUFLPS
and for the real-life variant with modular costs are reported
in Section 5.

2. PROBLEM DESCRIPTION

We are concerned with problems that might be modeled
as TUFLPS with nearly arbitrary cost functions. We denote
by I and J the sets of potential major and minor depots,
respectively. We denote by L the set of customers, with each
customer l ∈ L having a demand that can be expressed using
several measurement units: dm

l > 0, where each m ∈ M
represents a measurement unit (e.g., the industrial applica-
tion, described in details below, involves two measurement
units, the volume and the number of product batches). Each
of these sets define a layer of nodes in a three-layered net-
work in which major depots are connected to minor depots,
and minor depots to customers. We denote by R ⊆ I × J and
P ⊆ I × J × L the sets of arcs from major depots to minor
depots and of paths from major depots to minor depots to
customers, respectively. Figure 1 represents such a typical
network, where R ⊂ I × J (i.e., not all connections exist
between major and minor depots) and P ⊂ I × J × L. For
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FIG. 1. Typical three-layered network (I: major depots; J: minor depots;
and L: customers).

any set S, where S stands for I , J or L, we also denote by Sn

the subset of nodes of S that are connected by an arc to node
n. For example, in Figure 1, we have Ji = {

j, j′, j′′
} ⊂ J and

Lj = {
l, l′, l′′, l′′′

} ⊂ L.
Any feasible solution corresponds to a subset of P such

that each customer is assigned exactly one path and each
minor depot is assigned at most one major depot, that is,
a feasible solution corresponds to a forest of directed trees
rooted at major depots. In the typical network of Figure 1, the
arcs displayed in bold represent a solution that contains major
depots i and i′′, as well as minor depots j, j′, and j′′′ (i.e., depots
i′ and j′′ are closed in this solution). The corresponding forest
consists of two directed trees, one rooted at depot i and the
other rooted at depot i′′. Any feasible solution induces a flow
vector �x = (xm)m∈M that can be decomposed as follows: (1)
�xijl = (xm

ijl)m∈M
: the flow vector on path (i, j, l) ∈ P, with each

component xm
ijl equal to dm

l if (i, j, l) belongs to the feasible
solution, and to 0, otherwise; (2) �xij = (xm

ij )m∈M
: the flow

vector on arc (i, j) ∈ R from major depot i ∈ I to minor depot
j ∈ J , with each component defined as xm

ij ≡ ∑
l∈Lj

xm
ijl; (3)

�xj = (xm
j )

m∈M
: the flow vector through minor depot j ∈ J ,

with each component defined as xm
j ≡ ∑

i∈Ij
xm

ij ; and (4)
�xi = (xm

i )m∈M : the flow vector through major depot i ∈ I ,
with each component defined as xm

i ≡ ∑
j∈Ji

xm
ij .

We assume that the objective function to minimize is sep-
arable into a sum of functions of the flow passing through
each node, each arc and each path:

f (�x) =
∑
i∈I

H1
i (�xi) +

∑
(i,j)∈R

G1
ij(�xij) +

∑
j∈J

H2
j (�xj)

+
∑

(i,j,l)∈P

G2
ijl(�xijl),

where H1
i and H2

j are the location cost functions associated
to each major depot i ∈ I and to each minor depot j ∈ J ,
respectively; G1

ij and G2
ijl are the transportation cost func-

tions associated to each depot–depot arc (i, j) ∈ R and to
each path (i, j, l) ∈ P, respectively. Each of these functions
is nonnegative and its value at 0 is 0.

A common class of objective functions allows us to
impose or relax the single assignment constraints without
affecting the optimal value, as has been previously [9, 13]

demonstrated for two specific objective functions. Objec-
tive functions in this class must satisfy the following three
conditions:

1. Functions H1
i (), G1

ij() and G2
ijl() depend only on the flow

expressed in terms of one measurement unit. Hence, we
use the notations H1

i (xi), G1
ij(xij), and G2

ijl(xijl).

2. For each path (i, j, l) ∈ P, the pathwise cost function G2
ijl

can be decomposed by arc:

G2
ijl(xijl) = (c1

ij + c2
jl)xijl ,

where c1
ij and c2

jl are nonnegative costs for depot–depot
arc and depot-customer arc, respectively.

3. The following inequality is satisfied, for any pair of major
depots i, i′ ∈ I and for any minor depot j ∈ Ji ∩ Ji′ :

H1
i (xi) + H1

i′ (xi′) + G1
ij(xij) + G1

i′j(xi′j) ≥ H1
i (xi + xi′j)

+ H1
i′ (xi′ − xi′j) + G1

ij(xij + xi′j),

where xi ≥ xij > 0 and xi′ ≥ xi′j > 0.

The second condition on the per-path costs is usually
satisfied by practical transportation costs. It is a necessary
condition: in its absence, even a trivial problem without any
other cost would exhibit instances for which the single assign-
ment constraints are violated by all optimal solutions. The
third condition implies that consolidation is always profitable
at the depot–depot level. In other words, given a minor depot
j ∈ J that is used to satisfy some customer demands, it is
always more valuable to route these demands from a single
major depot i ∈ I , instead of from two major depots i, i′ ∈ I .

Theorem 1. Assume conditions 1, 2, and 3 are satisfed. If
we relax the single assignment constraints, there exists an
optimal solution to the relaxed problem for which the single
assignment constraints are satisfied.

Proof. Assume we are given an optimal solution to the
relaxed problem that induces a flow x, expressed in terms of
the measurement unit used to write functions H1

i (), G1
ij(), and

G2
ijl(), for which there is at least one pair of arcs (i, j), (i′, j)

such that xij > 0 and xi′j > 0, called conflicting arcs (with
respect to the single assignment constraints). We show this
solution can be modified into another, still optimal, solution
with one less such conflicting arc. Without loss of generality,
we assume that c1

ij ≤ c1
i′j. We define a feasible solution x′

obtained from x by reducing by xi′j the flow on (i′, j), so
that x′

i′j = 0, x′
i′ = xi′ − xi′j, and x′

i′jl = 0, l ∈ Lj, and by
augmenting it by the same amount on (i, j), so that x′

ij =
xij + xi′j, x′

i = xi + xi′j, and x′
ijl = xijl + xi′jl, l ∈ Lj. As a

result, the nonpositive amount (by optimality of x) by which
the objective function is modified simplifies to:

H1
i (xi) + H1

i′ (xi′) + G1
ij(xij) + G1

i′j(xi′j)

+
∑
l∈Lj

(G2
ijl(xijl) + G2

i′jl(xi′jl))
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− (H1
i (x′

i) + H1
i′ (x

′
i′) + G1

ij(x
′
ij) +

∑
l∈Lj

G2
ijl(x

′
ijl)) ≤ 0,

which after simplifications, can be divided into two terms:

H1
i (xi) + H1

i′ (xi′) + G1
ij(xij) + G1

i′j(xi′j)

− ((H1
i (x′

i) + H1
i′ (x

′
i′) + G1

ij(x
′
ij))

and

∑
l∈Lj

(G2
ijl(xijl) + G2

i′jl(xi′jl)) −
⎛
⎝∑

l∈Lj

G2
ijl(x

′
ijl)

⎞
⎠ .

The first term is nonnegative by condition 3. Using condition
2, the second term can be simplified to:∑

l∈Lj

(c1
i′j − c1

ij)xi′jl,

which is nonnegative by assumption. Hence, the difference
in the objective function values between the optimal solution
x and x′ is nonnegative, which implies that x′ is also optimal.
By applying the same argument a finite number of times,
we eventually eliminate all conflicting arcs and obtain an
optimal solution that does not violate the single assignment
constraints. ■

In this article, we consider the classical TUFLPS, as well
as an industrial variant of the TUFLPS with modular costs (a
well-studied cost structure in the literature on facility loca-
tion, see for instance [10, 11, 15, 16]). With respect to the
classical TUFLPS, the objective function is defined as fol-
lows. All cost functions can be expressed in terms of one
measurement unit, including H2

j (), so the flows x are written
as scalars and the demand for customer l is denoted dl. Let
h1

i ≥ 0 be the fixed cost associated with each major depot
location i ∈ I and h2

j ≥ 0 the fixed cost associated with each
minor depot location j ∈ J . The location costs for major depot
i ∈ I and minor depot j ∈ J , respectively, are then given by:

H1
i (xi) =

{
h1

i , if xi > 0,

0, otherwise,

H2
j (xj) =

{
h2

j , if xj > 0,

0, otherwise.

Cost functions G1
ij() on depot–depot arcs (i, j) ∈ R are set

to zero. Condition 3 is satisfied by these cost functions. In
addition, we assume that condition 2 is satisfied, as in most
references in the literature on two-level UFLPs. As a conse-
quence, the single assignment constraints might be imposed
without affecting the optimal value.

The industrial variant of the TUFLPS with modular costs
might be modeled in our framework by associating cross-
docking terminals to major depots, smaller terminals to minor
depots and tours to customers. We use two measurement

units, the volume and the number of product batches. Func-
tions H1

i (), G1
ij(), and G2

ijl() depend only on the volume,

while functions H2
j () depend only on the number of prod-

uct batches. We use the notations x and xp to represent the
volumetric flows and the number of product batches, respec-
tively, with the demand for customer l being denoted dl and
dp

l for the two respective measurement units. Thus, H1
i (xi),

G1
ij(xij), H2

j (xp
j ), and G2

ijl(xijl) denote the values taken by the

functions. Further, for each major depot i ∈ I , let e0
i be the

cost of operating one large-size vehicle from the closest pri-
mary facility to depot i ∈ I , h1

i the fixed cost for using that
depot and V0 the volumetric capacity of one large-size vehi-
cle. The location cost for the use of depot i ∈ I is then given
by:

H1
i (xi) =

{
h1

i + e0
i

⌈
xi/V0

⌉
, if xi > 0,

0, otherwise.

For each arc (i, j) ∈ R from a major depot i ∈ I to a minor
depot j ∈ J , let e1

ij be the cost of operating one medium-size

vehicle and V1 be the volumetric capacity of one medium-size
vehicle. The transportation cost on that arc is

G1
ij(xij) = e1

ij

⌈ xij

V1

⌉
.

The cost of sorting parcels at each minor depot j ∈ J can
also be represented by modular costs. Let B be the number
of parcels that can be handled in one batch of sorting, and bj

the cost of sorting one such batch. The location cost function
for minor depot j ∈ J is then

H2
j (xp

j ) = bj

⌈
xp

j

B

⌉
.

Finally, the transportation cost for each path (i, j, l) ∈ P is
simply proportional to the unit cost c2

jl for starting each tour
l ∈ Lj at minor depot j ∈ J:

G2
ijl(xijl) = c2

jlxijl.

Note that condition 2 is satisfied, but that condition 3 is not
always satisfied by the modular costs H1

i () and G1
ij(). Hence,

the single assignment constraints must be imposed in the
TUFLPS with modular costs that we consider.

3. MULTILAYER VARIABLE NEIGHBORHOOD
SEARCH

The VNS metaheuristic [14, 30] provides a systematic
approach for exploiting multiple neighborhood structures for
problem (P): minx∈X⊆S {f (x)}, where X is the set of feasible
solutions and S is the search space. Starting from the best
known feasible solution x ∈ X and assuming there are kmax

neighborhood structures, VNS first orders them from 1 to
kmax and then scans them iteratively in that order. At every
iteration k, a new solution x′ ∈ S is generated in the cur-
rent neighborhood Nk(x) (this solution might then be further
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optimized using some search algorithm). Then, there are two
cases: (1) f (x′) < f (x), in which case the search restarts
from x′, which is now the best known feasible solution, and
is recentered toward the first neighborhood, that is, we set k
to 1; (2) f (x′) ≥ f (x), in which case the attempt to improve
solution x using Nk(x) has failed and we move on to the
next neighborhood Nk+1(x), unless k + 1 exceeds kmax, in
which case the loop over k is stopped. Typically, there are
randomized components in the selection of x′ in Nk(x). This
is why this loop is embedded into an outer loop that controls
the overall computational effort. Algorithm 1 summarizes the
method.

Algorithm 1 VNS(x: current solution)

The solution x given as input to the algorithm is typi-
cally obtained by some greedy constructive procedure, but
can also be derived from more sophisticated methods. In Step
5, one might generate x′ at random (the so-called “shaking”
step), or find the best solution in Nk(x). When x′ is gener-
ated at random, one obtains the so-called “reduced” VNS,
while if x′ is the best solution in Nk(x), one obtains the vari-
able neighborhood descent metaheuristic. Between these two
extreme approaches, there is a wide spectrum of possibili-
ties: for instance, find the best solution in a subset of Nk(x)
(often randomly generated), or scan the solutions in Nk(x) in
some order (often randomly generated) until a first improving
solution is found. Often, the final x′ is obtained after perform-
ing a search algorithm, which can be inspired by VNS itself
or by any other metaheuristic, or even by an exact method
derived from integer programming or constraint program-
ming. The termination condition of the algorithm typically
controls the overall computational effort by imposing limits
on the number of iterations or the total time.

The MLVNS (MLVNS) is a variant of VNS based on divid-
ing the neighborhood structures into lmax layers, each layer l
having kl

max associated neighborhood structures. The layers
are ordered from 1 to lmax and then scanned in that order.
Typically, as in the standard VNS, the neighborhood struc-
tures grow in complexity with the layer index. For each layer
l, a VNS is invoked, with the generation of x′ in a neighbor-
hood Nk(x) consisting in scanning the solutions in a subset of

Nk(x) in some (randomly generated) order until a first improv-
ing solution is found. To define the subset of Nk(x), we use
mk

max (randomly ordered) subneighborhood structures, result-

ing from a “natural” decomposition of Nk : N1
k , . . . , N

mk
max

k . At
each step m, one move in Nm

k (x) is performed to generate a
candidate solution x′. If l = 1, we assume the evaluation of
this candidate solution is easy. Otherwise, when l > 1, fur-
ther optimization is necessary to evaluate the impact of the
move; for that purpose, MLVNS is called recursively up to
layer l−1 to produce a final candidate solution x′. The gener-
ation of candidate solutions continues until x′ improves upon
x or m > mk

max, that is, all subneighborhood structures have
been explored. The remaining steps are identical to those per-
formed by the standard VNS. Algorithm 2 summarizes the
approach.

Algorithm 2 MLVNS(x: current solution, lmax: number of
layers)

As for VNS, the initial solution x given as input to the algo-
rithm is often obtained by a greedy constructive procedure.
The number of layers lmax and the order in which they will be
traversed is also determined in the initialization phase. The
search in layer l > 1 makes use of the search for the previous
layers to evaluate any candidate solution x′. Such a strategy
can only be efficient if the complexity of the neighborhood
structures increases with the layer index, since the search in
layers 1 to l is repeated for all subsequent layers l +1 to lmax.
MLVNS formalizes two approaches that are commonly used
in the metaheuristics literature. First, when there are neigh-
borhood structures for which the exact evaluation of each
move is so complex that it could be advantageous to per-
form a heuristic evaluation instead. In that case, the MLVNS
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framework represents the situation where this heuristic evalu-
ation is obtained by calling MLVNS itself on previous layers.
A second situation occurs when a diversification method is
used to complement a VNS, where the diversification steps
themselves can be represented by a VNS. We will see exam-
ples of these two situations in the heuristic method that we
propose to solve our generalized class of problems. It is
a three-layer MLVNS approach: layer 1 represents a VNS
with simple neighborhood structures; layer 2 is an MLVNS
based on complex neighborhood structures for which each
move is evaluated using the VNS of layer 1; layer 3 can be
seen as a diversification approach that perturbs the current
solution with techniques that can be assimilated to particu-
lar moves in large-scale neighborhood structures, each move
being completed by performing the MLVNS of layer 2.

To simplify the description of the MLVNS heuristic for our
problem, we present a generic neighborhood search (GNS)
procedure that is used in all subsequent developments. Given
a solution x and a nonempty finite neighborhood N(x), the
procedure outputs a solution x′ ∈ N(x) ∪ {x} according to
a search strategy that depends on the values of two input
parameters: STOP, which determines when to stop the search
in N(x), and �, which specifies if x′ should improve, or not,
upon x. The procedure is described in Algorithm 3.

Algorithm3 GNS(x: current solution, N(x): neighborhood
of x, (STOP, �), x′: new solution)

Four main variants of the GNS procedure are defined by
the values of the input parameters STOP and �:

1. best: finding the best, but not necessarily improving,
solution in N(x) is obtained by setting STOP = false and
� = ∞;

2. best improving: finding the best improving solution in
N(x) (and returning x if no such solution exists) is
obtained by setting STOP = false and � = 0;

3. first improving: by setting STOP = (� < 0) and � = 0,
the search stops when a first improving solution in N(x)
is found, but if no such solution exists, x is returned;

4. first improving or best: by setting STOP = (� < 0) and
� = ∞, the search stops when a first improving solution
in N(x) is found, but if no such solution exists, the best
solution in N(x) is returned.

In the remainder of the text, these four terms will be used
to designate the appropriate combination of values of the two
input parameters STOP and �.

Before providing the details of the three layers of our
MLVNS heuristic, we now describe the structure of feasi-
ble solutions to our problem and then present the greedy
constructive procedure used to generate the initial solution.

3.1. Solution Space

The structure of any feasible solution x to our problem is
a forest containing all customers, and only the open minor
depots J(x) and open major depots I(x). Each tree in this for-
est is rooted at major depot i, which is connected to the open
minor depots assigned to major depot i, denoted Ji(x), and
each of these open minor depots, say j, is itself connected to
the customers assigned to minor depot j, denoted Lj(x). Com-
puting the objective function value f (x) of any such solution
x is an easy task, although there are many elements defining
the cost: the objective function is decomposed into a sum of
functions that are only affected by changes local to a node
(customer, minor depot or major depot). We exploit the forest
structure of any feasible solution, and the ease in computing
the cost of such solution, in the MLVNS method developed
to solve TUFLPS.

3.2. Initial Solution by a Greedy Constructive Procedure

At every iteration of the greedy constructive procedure,
we are given an infeasible current solution x, that is, some
customers are not connected in x. An iteration starts by select-
ing one such unconnected customer, say l, and by exploring
the ConnectL(l) neighborhood, which contains all solutions
that connects l to a depot–depot pair. The ConnectL(l) neigh-
borhood is explored using the best variant; hence, it finds the
best way to connect customer l to any pair of minor and major
depots, given the cost of the current infeasible solution. Note
that connecting customer l to any pair of minor and major
depots may lead to assign l to an open minor depot, or to
open a minor depot. Also, when a minor depot is open, it may
be assigned to an open major depot or it may lead to open
a new major depot. In the variants of TUFLPS we consider,
multiple components of the cost functions are proportional to
the demand at each customer. To select customer l, we sim-
ply use the observation that customers with higher demand
have more impact on the objective function value. Hence,
we initially sort the customers in nonincreasing order of
demand (ties being broken randomly) and scan the customers
in that order, each time exploring the ConnectL(l) neighbor-
hood. The greedy constructive procedure is summarized in
Algorithm 4.

Algorithm 4 Greedy(x: solution)
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3.3. Layer 1: VNS with Exchange and Close
Neighborhoods

Four neighborhood structures are used at layer 1 of
the MLVNS method: ExchangeL, ExchangeJ, CloseJ and
CloseI.

In the ExchangeL neighborhood structure, the subneigh-
borhood structures are defined by scanning the set of cus-
tomers in random order. Then, for each customer l, the
ExchangeL(l) neighborhood is explored: it consists in reas-
signing customer l, currently assigned to minor depot j, to
another open minor depot j′. The ExchangeL(l) neighbor-
hood is explored using the first improving variant of GNS,
with the candidate open minor depots j′ being scanned in
nondecreasing order of transportation cost (i.e., distance, in
most contexts) to l. As soon as an improving solution is found,
it is selected as the new current solution, but if no improving
solution is obtained, the current solution remains so. Note
that, when reassigning customer l from minor depot j to a
different minor depot, we may close j (as well as the major
depot connected to j), but this is easily taken into account
when computing the impact of the move on the objective
function. To summarize, steps 6 to 12 of MLVNS are per-
formed as in Algorithm 5 for the ExchangeL neighborhood
structure.

Algorithm 5 ExchangeL(x: current solution)

In the ExchangeJ neighborhood structure, the subneigh-
borhood structures are obtained by scanning the set of open
minor depots J(x) in random order. For each open minor
depot j, the ExchangeJ(j) neighborhood is explored: it con-
sists in reassigning minor depot j, currently assigned to major
depot i, to another open major depot i′. The ExchangeJ
neighborhood is explored using the first improving variant
of GNS, with the candidate open major depots being scanned
in increasing order of transportation costs for the customers
linked to j. Steps 6 to 12 of MLVNS are performed as in
Algorithm 6 for the ExchangeJ neighborhood structure.

Algorithm 6 ExchangeJ(x: current solution)

The subneighborhood structures in the CloseJ neighbor-
hood structure are derived from scanning the set of open
minor depots J(x) in random order. For each open satellite

j, the CloseJ(j) neighborhood is explored by applying the
ExchangeL(l) neighborhood search for all l ∈ Lj(x), that is,
the customers connected to satellite j in solution x. The explo-
ration of the ExchangeL(l) neighborhood is performed using
the first improving or best variant of the GNS procedure, that
is, as soon as customer l can be reassigned to another open
minor depot by improving the cost, the move is performed,
but otherwise, the best way to reassign customer l to another
open minor depot is performed. This approach ensures that all
customers currently assigned to minor depot j are reassigned
to another minor depot, which effectively closes minor depot
j. As in the greedy constructive procedure, the customers in
Lj(x) are scanned in nonincreasing order of demand (with
ties broken randomly). Algorithm 7 summarizes steps 6 to
12 of MLVNS when the CloseJ neighborhood structure is
explored.

Algorithm 7 CloseJ(x: current solution)

The CloseI neighborhood structure is explored in a sim-
ilar way. The subneighborhood structures are obtained by
scanning the set of open major depots I(x) in random order.
For each open major depot i, the CloseI(i) neighborhood is
explored by searching the ExchangeJ(j) neighborhood for all
j ∈ Ji(x), that is, the set of open minor depots connected to
major depot i in solution x. Again, the ExchangeJ(j) neigh-
borhood is explored using the first improving or best variant
of the GNS procedure, to make sure that all minor depots con-
nected to major depot i are reassigned, so that major depot
i is effectively closed. The ExchangeJ(j) neighborhoods are
scanned in nonincreasing order of the total demand xj satis-
fied through minor depot j in the current solution x. Steps 6
to 12 of MLVNS are performed as in Algorithm 8 when the
CloseI neighborhood structure is explored.

The four neighborhood structures are explored at layer 1
of the MLVNS algorithm in the following order: ExchangeL,
CloseJ, CloseI and ExchangeJ. The idea is to perform
ExchangeL moves as much as possible, before trying the
more computationally intensive CloseJ and CloseI moves,
which will also significantly modify the current solution.
The less effective ExchangeJ neighborhood is explored as
a last resort in case the other types of moves did not suc-
ceed in improving the solution. Preliminary computational
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Algorithm 8 CloseI(x: current solution)

experiments have confirmed the effectiveness of this particu-
lar order of exploration. Layer 1 is completed as soon as one
loop over the four neighborhood structures did not succeed in
improving the current solution, that is, the stopping condition
in Step 20 of MLVNS is set to true.

3.4. Layer 2: VNS with Open Neighborhoods

At layer 2 of the MLVNS algorithm, two neighborhood
structures are used: OpenI and OpenJ.

In the OpenI neighborhood structure, the subneighbor-
hood structures are obtained by scanning the set of closed
major depots I \ I(x) in random order. For each closed major
depot i, it performs the OpenI(i) move, which connects to
major depot i several, but not necessarily all, open minor
depots in J(x) ∩ Ji. If all such open minor depots were con-
nected to i, some open major depot would not be connected
to any minor depot. To avoid this situation, minor depots in
J(x)∩ Ji are connected to major depot i, but if an open major
depot i′ would be bereft of minor depots, one (arbitrarily cho-
sen) minor depot in J(x)∩ Ji instead remains connected to i′.
It is only after applying MLVNS at layer 1 to complete the
move that the final configuration of open major depots will
be determined.

The OpenJ neighborhood structure is explored in a similar
way. The subneighborhood structures are derived by scanning
the set of closed minor depots J \ J(x) in random order. For
each closed minor depot j, it performs the OpenJ(j) move by
connecting to j most customers in Lj. However, if any open
minor depot j′ would be “closed” (i.e., left unconnected to
any customer), one arbitrarily chosen customer in Lj remains
assigned to j′.

Steps 6 to 12 of MLVNS are performed as follows when
the OpenI (Algorithm 9) and OpenJ (Algorithm 10) neigh-
borhoods are explored. Note that OpenI(i) and OpenJ(j) can
both be seen as neighborhoods containing only one solution;
hence, we use GNS with the best variant to represent the
corresponding moves.

The two neighborhood structures are explored in the fol-
lowing order: OpenI and OpenJ. The motivation is that OpenI

perturbs the solution more significantly than OpenJ, that is,
more customers are reassigned when exploring the OpenI

Algorithm 9 OpenI(x: current solution)

Algorithm 10 OpenJ(x: current solution)

neighborhood than when exploring the OpenJ neighborhood.
Hence, OpenI tends to diversify the search better than OpenJ

and should therefore be performed first. Preliminary compu-
tational experiments have confirmed this intuition. Layer 2 is
completed when one loop over the two neighborhood struc-
tures did not succeed in improving the current solution, that
is, the stopping condition in Step 20 of MLVNS is set to true.

3.5. Layer 3: Diversification Based on Cost Perturbation

The diversification techniques used at layer 3 of the
MLVNS algorithm are based on the following steps: (1)
increase the costs associated to subsets of open major and
minor depots in solution x, thus attempting to close these
depots; (2) starting from x, solve the resulting perturbed prob-
lem by performing the MLVNS algorithm at layer 2, thus
obtaining a new solution x′; (3) restore the original costs
and perform the MLVNS algorithm at layer 2, starting from
x′. Steps (1) and (2) correspond to performing one move in
a subneighborhood structure, that is, step 9 of the MLVNS
algorithm, while step (3) is the recursive call to MLVNS, that
is, step 10 of the MLVNS algorithm. Finally, the greedy con-
structive procedure is used to reinitialize the search when no
improvement has been made for some number of consecutive
iterations (we use 10 in our experiments). In that case, after
step (1), the current solution x is fully replaced with the out-
put of the constructive procedure. This random restart seems
particularly useful on small and difficult instances. Note that
such cost perturbations are frequently used in metaheuristic
approaches such as, for instance, guided local search [39–41]
and iterated local search [24, 25].

Four types of cost perturbations are performed, each
type being assimilated to a neighborhood structure. The
PerturbNodesJ (PerturbNodesI) neighborhood structure
randomly selects random numbers of open minor (major)
depots, and multiplies by a large value M(location) the
location cost function of these depots. The PerturbArcsJ

(PerturbArcsI) neighborhood structure also randomly
selects random numbers of open minor (major) depots. When
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minor depots are chosen, the transportation costs for all paths
going through these depots are multiplied by a large factor
M(transport). If, instead, major depots are chosen, the trans-
portation costs on the arcs from these major depots to all
connected minor depots are multiplied by the same factor
M(transport). Extreme cost perturbations are used instead of
explicitly forbidding paths and depots, to preserve feasibility,
of the instance itself and of the current solution. Algorithms
11 to 14 summarize steps 6 to 12 of MLVNS for the four
neighborhood structures.

Algorithm 11 PerturbNodesJ(x: current solution)

Algorithm 12 PerturbNodesI(x: current solution)

Algorithm 13 PerturbArcsJ(x: current solution)

The order in which these four neighborhood struc-
tures are explored is PerturbArcsJ, PerturbNodesJ,
PerturbNodesI, PerturbArcsI. This order is motivated by
the same reasons that justify the order selected for layer 1: the
PerturbArcsJ and PerturbArcsI neighborhood structures
are similar to the ExchangeL and ExchangeJ neighborhood
structures, while PerturbNodesJ and PerturbNodesI are
similar to CloseJ and CloseI. Layer 3 is completed when a
CPU time limit is reached.

Algorithm 14 PerturbArcsI(x: current solution)

4. COMPETING APPROACHES

To assess the efficiency of the MLVNS algorithm, we
implemented two additional solution methods for each prob-
lem addressed: a path-based integer program, solved with the
state-of-the-art solver CPLEX (version 12.1) and a slope scal-
ing heuristic [19] based on the same formulation. We describe
these approaches in the next subsections.

4.1. Path-Based Integer Programs

For both the classical TUFLPS and the industrial TUFLPS
with modular costs, we define the following decision vari-
ables:

yi =
{

1, if major depot i ∈ I is used,

0, otherwise,

z1
ij =

{
1, if depot– depot arc (i, j) ∈ R is used,

0, otherwise,

and

z2
ijl =

{
1, if path (i, j, l) ∈ P is used,

0, otherwise.

Given the notation introduced in Section 2, the formulation
of the classical TUFLPS is given by:

min
∑
i∈I

h1
i yi +

∑
(i,j)∈R

h2
j z1

ij +
∑

(i,j,l)∈P

cijlz
2
ijl (1)

∑
j∈Jl

∑
i∈Ij

z2
ijl = 1, l ∈ L, (2)

∑
j∈Jl∩Ji

z2
ijl ≤ yi, i ∈ I , l ∈ Li, (3)

z2
ijl ≤ z1

ij, (i, j, l) ∈ P, (4)∑
i∈Ij

z1
ij ≤ 1, j ∈ J , (5)

z2
ijl ∈ {0, 1} , (i, j, l) ∈ P, (6)

z1
ij ∈ {0, 1} , (i, j) ∈ R, (7)

yi ∈ {0, 1} , i ∈ I , (8)
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where cijl = (c1
ij + c2

jl)dl, for each path (i, j, l) ∈ P, and
Li = {l ∈ L | Jl ∩ Ji = ∅}. Constraints (2) ensure that exactly
one path reaches each customer: not only is the demand then
satisfied, but the flow to each customer is also never split.
Constraints (3) and (4) force paths to go only through open
major and minor depots, respectively. Inequalities (5) are the
single assignment constraints, which are redundant, given the
cost structure, as seen in Section 2.

Other relevant works (see Section 1) mostly assume that
transportation costs are decomposable by arc and exploit an
alternative formulation without the single assignment con-
straints, where fixed costs are assigned to minor depots (using
binary location variables) rather than to depot–depot arcs, as
in the model above. There is a trivial correspondence between
this alternative formulation and the one used here.

Given the formulation above and the notation introduced
in Section 2, the industrial variant of the TUFLPS with mod-
ular costs can be modeled with additional integer variables:
w0

i represents the number of large-size vehicles serving major
depot i ∈ I , w1

ij is the number of medium-size vehicles oper-
ating from major depot i ∈ I to minor depot j ∈ Ji, and
w2

j corresponds to the number of batches of parcels sorted at
minor depot j ∈ J . The following integer program was shown
to yield strong bounds in [13]:

min
∑
i∈I

h1
i yi +

∑
i∈I

e0
i w0

i +
∑

(i,j)∈R

e1
ijw

1
ij +

∑
j∈J

bjw
2
j

+
∑

(i,j,l)∈P

c2
jldlz

2
ijl (9)

subject to constraints (2) to (8) and

∑
j∈Ji

∑
l∈Lj

dlz
2
ijl ≤ V0w0

i , i ∈ I , (10)

∑
l∈Lj

dlz
2
ijl ≤ V1w1

ij, (i, j) ∈ R, (11)

∑
i∈Ij

∑
l∈Li

dp
l z2

ijl ≤ Bw2
j , j ∈ J , (12)

w0
i ∈ N, i ∈ I , (13)

w1
ij ∈ N, (i, j) ∈ R, (14)

w2
j ∈ N, j ∈ J . (15)

This formulation allows us to obtain near-optimal upper
and lower bounds in reasonable time on small instances.
However, on realistically sized instances, the gap between the
bounds computed by CPLEX remains relatively large even
after a few hours of computation (see Section 5).

4.2. Slope Scaling Heuristics

We use the integer program (1)–(8) to derive our slope
scaling heuristic for the classical TUFLPS. First, the formula-
tion can be simplified by introducing a set of binary variables

y2
j ≡ ∑

i∈Ij
z1

ij, j ∈ J , allowing us to reformulate the objective
function as

min
∑
i∈I

h1
i yi +

∑
j∈J

h2
j y2

j +
∑

(i,j,l)∈P

cijlz
2
ijl.

Then, we define a relaxation obtained by dropping the inte-
grality of the y2

j variables and by aggregating constraints (4)
into

∑
l∈Lj

∑
i∈Ij

dlz
2
ijl ≤

⎛
⎝∑

l∈Lj

dl

⎞
⎠ y2

j , j ∈ J .

We can then project out the y2
j variables, since the fixed costs

are nonnegative:

y2
j = 1

(
∑

l∈Lj
dl)

∑
l∈Lj

∑
i∈Ij

dlz
2
ijl.

The objective function of the relaxed problem then becomes:

min
∑
i∈I

h1
i yi +

∑
(i,j,l)∈P

(cijl + dlh̃
2
j )z

2
ijl,

where

h̃2
j = h2

j

(
∑

l∈Lj
dl)

.

The relaxed problem can be further reduced. For each pair
(i, l), i ∈ I , l ∈ Li, if an optimal solution contains a path
from i to l, the intermediate node on this path must be a
minor depot that minimizes the linearized cost (cijl + dlh̃2

j ).
Hence, we define the following linearized cost for each pair
(i, l):

c̃il = min
j∈Jl∩Ji

{
cijl + dlh̃

2
j

}
.

Then, we can solve the relaxed problem as an equivalent
UFLP, called the linearized subproblem:

min
∑
i∈I

h1
i yi +

∑
i∈I

∑
l∈Li

c̃ilzil

∑
i∈Il

zil = 1, l ∈ L,

zil ≤ yi, i ∈ I , l ∈ Li,

zil ∈ {0, 1} , ∀i ∈ I , l ∈ Li,

yi ∈ {0, 1} , ∀i ∈ I .

The UFLP, although NP-hard, tends to be easily solved
in practice. In the current case, the instances are also signifi-
cantly smaller than the original TUFLPS instances, and solv-
ing them as integer programs with CPLEX, rather than linear
ones, incurs a negligible computational overhead (another
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possibility would be to use an efficient heuristic method such
as the randomized rounding procedure suggested in [3]).

A solution to the linearized subproblem can be easily
converted into a solution to the TUFLPS. However, doing
so yields solutions of poor quality. Instead, we exploit the
fact that fixing the set of open major depots based on the
solution of the linearized subproblem results in a simpler,
single-level facility location problem involving only minor
depots and customers. More precisely, fixing the values of
the yi variables in model (1)–(8) incurs instances of the fol-
lowing model, called the fixed subproblem, where I∗ ⊂ I is
the set of major depots such that yi is fixed to 1, R∗ ⊆ I∗ × J
and P∗ ⊆ I∗ × J × L are, respectively, the subsets of R and
of P induced by I∗:

min
∑
i∈I∗

h1
i +

∑
(i,j)∈R∗

h2
j z1

ij +
∑

(i,j,l)∈P∗
cijlz

2
ijl (16)

∑
j∈Jl

∑
i∈I∗∩Ij

z2
ijl = 1, l ∈ L, (17)

z2
ijl ≤ z1

ij, (i, j, l) ∈ P∗ (18)∑
i∈I∗∩Ij

z1
ij ≤ 1, j ∈ J , (19)

z2
ijl ∈ {0, 1} , (i, j, l) ∈ P∗, (20)

z1
ij ∈ {0, 1} , (i, j) ∈ R∗. (21)

The fixed subproblem can be reduced to a UFLP by relax-
ing the single assignment constraints (19) and by replacing
them with an artificial customer of highly negative (prof-
itable) transportation costs for each minor depot. In our
implementation, we did not perform this transformation and
rather solve the problem directly with CPLEX.

The slope scaling heuristic iteratively updates the lin-
earized penalties h̃2

j to better reflect the original nonlinear

costs. Each h̃2
j is initialized as above. Then, given an opti-

mal solution (z̃1, z̃2) to the fixed subproblem, each h̃2
j such

that
∑

l∈Lj

∑
i∈Ij

dl z̃2
ijl > 0 is updated to h2

j /
∑

l∈Lj

∑
i∈Ij

dl z̃2
ijl

(the values of h̃2
j are not modified otherwise). The process

is then repeated, with the updated linear penalties, until the
objective values of two consecutive fixed subproblems are
equal, or the objective values of the linearized and fixed
subproblems are equal, or some time limit is reached.

For the industrial variant of the TUFLPS, we develop a
specialized slope scaling heuristic by linearizing the modu-
lar costs, while leaving intact the fixed costs on the major
depots. Relaxing the integrality constraints on the w0

i , w1
ij,

and w2
j variables in the path-based integer program presented

in Section 4.1 allows us to project out these variables and to
remove the corresponding constraints (10)–(12) from the for-
mulation. For example, since the costs e0

i are nonnegative, we
can substitute variable w0

i using

w0
i = 1

V0

∑
j∈Ji

∑
l∈Lj

dlz
2
ijl, i ∈ I .

As a result, we initialize the linearized penalties as follows:

ẽ0
i = e0

i

V0
, i ∈ I ,

ẽ1
ij = e1

ij

V1
, (i, j) ∈ R,

b̃j = bj

B
, j ∈ J .

We then associate a linearized cost to each path (i, j, l) ∈
P: c̃2

ijl = (c2
jl + ẽ0

i + ẽ1
ij)dl + b̃jd

p
l . The resulting linearized

subproblem is:

min
∑
i∈I

h1
i yi +

∑
(i,j,l)∈P

c̃2
ijlz

2
ijl

subject to constraints (2) to (8).
The resulting TUFLPS has an objective function that sat-

isfies the conditions that imply the redundancy of the single
assignment constraints, given in Section 2. In particular, the
per path costs c̃2

ijl can be decomposed by arc. Therefore,
the single assignment constraints (5) can be removed, as
well as the z1

ij variables, since there are no costs (and no
more constraints) associated with these variables. The lin-
earized subproblem can be further reduced, since for each
pair (i, l), i ∈ I , l ∈ Li, if an optimal solution contains a path
from i to l, the intermediate node on this path must be a minor
depot that minimizes the linearized cost c̃2

ijl. The resulting
equivalent model is a UFLP that is solved with CPLEX, in a
similar way as in the case of the slope scaling heuristic for the
classical TUFLPS. Once an optimal solution to the UFLP is
obtained, it is converted into a solution to the TUFLPS. This
solution is then improved with a call to layer 1 of the MLVNS
heuristic.

The linearized penalties are updated for arcs and nodes
through which some flow is circulating in the best solu-
tion (ỹ, z̃2) obtained after performing the MLVNS-layer 1
heuristic. For example, let major depot i ∈ I be such that∑

l∈Li

∑
j∈Ji

dl z̃2
ijl > 0, and let

w̃0
i = 1

V0

∑
j∈Ji

∑
l∈Lj

dlz̃
2
ijl.

The linearized penalty ẽ0
i is then updated so that if the same

flow circulates through i in the solution of the next linearized
subproblem, then ẽ0

i corresponds to the per-depot cost of the
original problem:

ẽ0
i = e0

i

⌈
w̃0

i

⌉
w̃0

i

(the linearized penalty is not modified if w̃0
i = 0). Simi-

lar slope scaling updates are applied to ẽ1
ij, (i, j) ∈ R, and

b̃j, j ∈ J . The linearized subproblem (formulated as a UFLP)
is then iteratively evaluated with the updated penalties, until
the objective values from two consecutive calls to MLVNS-
layer 1 are equal, or the objective values of the linearized
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subproblem and the solution obtained from MLVNS-layer 1
are equal, or some time limit is reached.

5. COMPUTATIONAL RESULTS

The computational results reported in this section were
obtained on a 2.8 GHz Intel Xeon X5660 with 24 GB RAM
(with Hyper-Threading and Turbo Boost disabled) running
Debian 6.0/Linux 3.2 and CPLEX 12.1. All the heuristics
were coded in C+ + and compiled with g+ + at “-O2” opti-
mization settings, and CPLEX was used in single-threaded
mode at default settings. The UFLP subproblems in the slope
scaling heuristics were also solved with CPLEX, again at
default settings. Finally, the MLVNS heuristic, being the only
randomized method, was independently executed five times
for each instance; the values reported here take into account
all the executions of the heuristic.

In the next subsections, we report the results obtained
on instances of the classical TUFLPS and of the industrial
TUFLPS with modular costs. For both families of instances,
the same parameters were used in layer 3 of the MLVNS
heuristic: between 10 and 25% of the depots were chosen for
cost perturbation (p1 = 10% and p2 = 25%), location costs
were increased by M(location) = 108, and transportation
costs multiplied by M(transport) = 100.

5.1. Classical TUFLPS

Following [23], we derive 90 TUFLPS instances from the
Gap A, B and C instance sets for the UFLP [21]. Unlike [23],
we treat big-M values in the Gap instances as forbidden arcs.
The resulting networks are sparse, and some instances are
infeasible; those were not considered. The total number of
feasible instances is 74. In Table 1, we report the number
of feasible instances in each class next to the class name, in
parenthesis. The process yields small (|I| = |J| = |L| = 50),
but difficult instances: the root integrality gap for the integer
programming formulation exceeds 10% in some cases. We
also generated 20 larger instances of the same Gap A, B and
C families. The corresponding MGap A, B and C TUFLPS
instances are larger (|I| = |J| = |K| = 75), and even more
difficult. Again, infeasible instances were discarded, which
leads to 31 large instances in total.

In Table 1, we report average results on each class of
instances, while detailed results are provided in the appendix.
The upper bounds are expressed in terms of the gap from
the exact optimal value (obtained with CPLEX): for a given
upper bound Z̄ and an optimal value Z∗, the gap is computed
as Z̄/Z∗−1. For each column and class of instances, the min-
imum and maximum gaps are reported (over all independent
executions if applicable). The average is a geometric mean of
Z̄/Z∗ for all executions, from which 1 is subtracted, and the
average runtime is an arithmetic mean. We report the upper
bounds obtained by executing the first and second layers of
the MLVNS (columns “Layer 1” and “Layer 2”), without any
time limit, then by performing the third layer (column “Layer
3”) with a time limit of 60 s. Columns “CPLEX” give the

results obtained using CPLEX to solve the path-based inte-
ger formulation (see Section 4.1) at default settings, without
any time limit. Finally, columns “Slope Scaling” shows the
slope scaling heuristic results when it was executed with a
time limit of 24 min (which was almost never reached).

CPLEX solves the path-based model for the difficult
TUFLPS instances we generated. The small instances are
solved quickly; however, solution times increase significantly
on the larger MGap instances. In general, both the MLVNS
and the slope scaling heuristics seem to perform reasonably
well; however, despite the specialized mathematical heuris-
tic used for the slope scaling, the MLVNS seems preferable
overall. Layer 3 fares much better on the smaller instances,
regularly converging to optimal solutions. Indeed, over the
74 Gap instances, layer 3 provides systematically the optimal
solutions on 39 instances, while the average solution value is
within 1% of the optimal one for 32 instances. In comparison,
the same figures for the slope scaling heuristic show 7 and
20 instances, respectively. The performance of layer 3 on the
MGap instances remains reasonable even with a time limit of
60 s. Over the 31 MGap instances, layer 3 provides systemat-
ically the optimal solutions on 7 instances, while the solution
value is within 1% of the optimal one for 7 other instances.
For the slope scaling heuristic, these figures correspond to 0
and 5 instances, respectively. Layer 3 seems overall prefer-
able to the slope scaling heuristic, for each set of instances,
despite the fact that the latter heuristic exploits a specialized,
optimally explored, very large neighborhood. The contribu-
tion of each layer to the MLVNS performance is also quite
explicit: layer l performs better and more consistently than
layer l − 1.

5.2. Industrial TUFLPS with Modular Costs

We tested the MLVNS on the testbed described in [13].
This testbed is derived from data obtained from a major
French mail-order company, which provided us with a typical
network comprising 93 potential sites for the major depots,
320 potential sites for the minor depots and 701 customers,
as well as realistic estimates of the costs and the capacities.
Based on this real-application data, we have generated 32
instances by specifying:

• subsets of the sets of major depots, minor depots and cus-
tomers, that is, I , J , and L (three subnetworks, large, medium
and small, were generated);

• multipliers Mf , Mg, and Mp for, respectively, the fixed costs at
the major depots, the unit batch costs at the minor depots and
the capacities of the large-size vehicles at the major depots
(two values, 1 and 2, were tested for each multiplier).

Every instance is denoted X(Mf , Mg, Mp), with X = R, L,
M, or S, standing for real-application, large-scale, medium-
scale, or small-scale network, Mf , Mg, and Mp denoting the
multiplier values. Table 2 summarizes the characteristics of
the 32 instances. Column 1 gives the problem name, while
the next three columns indicate the number of major depots,
minor depots and customers. The next two columns show,
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TABLE 1. Performance of MLVNS, slope scaling and CPLEX on classical TUFLPS instances

gap (min/avg/max) % average runtime (s)

Instances Layer 1 Layer 2 Layer 3 CPLEX Slope Scaling

GapA (28) 6.57 36.02 63.83 0.01 14.84 42.42 0.00 0.01 0.02 0.00 0.00 0.00 0.00 5.99 14.28
0.00 0.03 60.02 7.86 53.53

GapB (16) 0.00 24.58 49.58 0.00 11.73 37.15 0.00 0.01 0.04 0.00 0.00 0.00 0.00 3.94 6.31
0.00 0.02 60.03 4.53 1.92

GapC (30) 14.00 30.27 56.80 0.02 14.54 33.05 0.00 0.23 6.92 0.00 0.00 0.00 0.00 4.28 14.16
0.00 0.02 60.02 31.47 98.34

MGapA (9) 5.73 34.42 49.36 0.00 20.06 39.65 0.00 5.22 13.22 0.00 0.00 0.00 0.04 5.33 12.46
0.00 0.04 60.05 540.84 11.36

MGapB (12) 26.29 46.09 78.01 0.00 19.53 39.58 0.00 5.08 20.90 0.00 0.00 0.00 0.02 7.22 14.11
0.00 0.06 60.05 655.63 129.84

MGapC (10) 13.24 34.68 63.63 6.47 18.30 39.51 0.00 3.52 14.18 0.00 0.00 0.00 0.05 7.23 19.81
0.00 0.05 60.05 1002.10 11.39

TABLE 2. Set of 32 instances (each row contains 8 instances)

Problem |I| |J| |L| |R| |Q| Mf Mg Mp

R (Mf , Mg, Mp) 93 320 701 2250 28782 {1, 2} {1, 2} {1, 2}
L (Mf , Mg, Mp) 70 240 526 1260 16131 {1, 2} {1, 2} {1, 2}
M (Mf , Mg, Mp) 46 160 350 562 6652 {1, 2} {1, 2} {1, 2}
S (Mf , Mg, Mp) 23 80 175 167 1807 {1, 2} {1, 2} {1, 2}

respectively, the number of arcs between major depots and
minor depots, denoted |R|, and the number of arcs between
minor depots and customers, denoted |Q|.

The time limit for both MLVNS and slope scaling was
set to 24 min, and we report values for the path-based integer
program solved with CPLEX under time limits of 24 min and
2 h. Note that, as the termination criteria are only tested at the
end of each iteration of the outer loop, the total CPU time for
MLVNS will always exceed 24 min (1440 s), usually by a few
seconds. The gaps are computed relative to the lower bound
obtained by executing CPLEX for up to 2 h (or until more
than 24 GB of RAM was required); this lower bound corre-
sponds to the optimal value only for the smallest instances
(“S” subnetwork), since CPLEX then reports final gaps on
the order of .1%.

Table 3 reports the performance of each layer in the
MLVNS (columns “Layer 1,” “Layer 2,” and “Layer 3”), that
of CPLEX, solving the integer formulation with a time limit
of 24 min and 2 h (columns “CPLEX (24 min)” and “CPLEX
(2h)”), and that of the slope scaling heuristic (column “Slope
Scaling”). For each set of instances, the minimum, aver-
age and maximum gaps are shown, along with the average
runtime. Detailed results are provided in the appendix.

These results indicate that the MLVNS algorithm is com-
petitive with solving the path-based formulation with CPLEX
on the smaller subnetworks, and outperforms it on the larger
subnetworks. In fact, even when the time limit is extended
to 2 h, CPLEX computes weak upper bounds, with gaps

on the order of 50%, the best upper bound on instances
derived from the actual application being 11.91%. In con-
trast, the MLVNS consistently converges to solutions at most
6% worse than the optimum. Of particular interest is instance
R(1,1,1), which corresponds to the full network with the orig-
inal costs obtained from the French mail-order company.
On this instance, the solution found with CPLEX after 2 h
exhibits a gap of 57%, while the solutions obtained with the
MLVNS are always within 5% of the best lower bound.

The MLVNS also performs better, overall, than the slope
scaling heuristic, although the difference is weaker on the
instances derived from the real subnetwork. The table of
detailed results (see Appendix) reveals that this can be
attributed to the better performance of the slope scaling
heuristic on instances in which location costs for the major
depots are scaled up from their actual value. Note that these
costs are not linearized in the slope scaling heuristic, which
explains why the heuristic performs better when location
costs weigh more heavily in the objective function.

Again, it is clear that each layer contributes both to the
quality and consistency of the method. Not only are average,
minimum and maximum gaps reduced in layer l, compared
to layer l − 1, but so are the differences between minimum
and maximum gaps.

6. CONCLUSIONS

In this article, we have presented a heuristic method for
solving a large class of TUFLPS constraints (TUFLPS).
The heuristic algorithm is based on a variant of the VNS
metaheuristic, which we call the MLVNS. Three layers of
neighborhood structures are used and ordered in increasing
complexity. In addition, each time a move is performed in
a neighborhood at layer l > 1, this move is completed and
evaluated by a recursive call to MLVNS up to layer l−1. The
heuristic was tested on two specific problems, the classical
TUFLPS, and a multiechelon location-distribution problem
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TABLE 3. Performance of MLVNS, slope scaling and CPLEX on instances of the industrial TUFLPS

gap (min/avg/max) % average runtime (s)

Instances Layer 1 Layer 2 Layer 3 CPLEX (24 min) CPLEX (2h) Slope scaling

Small 9.08 10.81 12.45 0.06 3.20 5.59 0.01 0.23 0.69 0.01 0.01 0.03 0.01 0.01 0.01 0.34 2.05 4.04
0.00 0.29 1440.35 722.54 3602.44 360.09

Medium 5.84 8.86 12.20 1.53 3.18 5.35 0.40 0.96 1.72 0.18 0.51 0.90 0.07 0.24 0.38 2.68 3.57 5.05
0.01 5.92 1443.95 1440.08 7200.07 548.50

Large 10.85 12.55 13.61 2.76 5.22 11.58 1.76 2.61 3.65 10.14 38.01 66.14 1.44 2.72 4.50 3.46 3.95 4.37
0.03 23.77 1454.11 1440.17 7200.18 1241.08

Real 12.10 14.16 16.13 5.22 6.53 9.39 3.42 4.87 6.59 74.16 114.67 294.26 11.91 46.61 87.61 4.15 5.14 6.26
0.09 59.17 1482.26 1440.43 7200.34 1304.99

arising from an actual application in fast delivery service.
The computational results on large sets of instances of the
two problems show the efficiency of our adaptation of the
MLVNS approach to TUFLPS with complex cost functions.

These results also confirm the quality of the lower bounds
obtained by solving the path-based integer programming for-
mulations. A promising research avenue is to explore the
development of exact algorithms based on decomposition
approaches applied to the path-based models. These algo-
rithms would benefit from the integration of the heuristic
methods developed in this article. Other research avenues
include the study of extensions to our problem. In particular,
both the location-distribution and the routing decisions could
be handled simultaneously within a multiperiod version of the
problem.
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APPENDIX: DETAILED COMPUTATIONAL RESULTS

TABLE A1. Detailed numerical results for small GapA instances

gap (min/avg/max) % average runtime (s) gap% runtime (s)

Instances Layer 1 Layer 2 Layer 3 CPLEX Slope Scaling

432GapA 6.57 6.57 6.57 6.56 6.56 6.56 0.00 0.00 0.01 0.00 0.00
0.00 0.01 60.03 2.71 0.94

532GapA 39.72 39.72 39.72 0.04 2.69 13.26 0.00 0.00 0.00 0.00 6.70
0.00 0.04 60.02 12.63 3.00

632GapA 31.08 31.08 31.08 6.17 16.10 30.98 0.02 0.02 0.02 0.00 6.21
0.00 0.02 60.03 2.25 2.36

732GapA 49.68 49.68 49.68 0.02 9.94 21.30 0.00 0.00 0.00 0.00 0.05
0.00 0.03 60.02 16.43 2.95

832GapA 24.85 24.85 24.85 6.27 12.46 18.65 0.02 0.02 0.02 0.00 6.25
0.00 0.02 60.03 18.96 1.40

932GapA 52.93 52.93 52.93 13.16 18.50 26.48 0.00 0.00 0.00 0.00 6.66
0.00 0.03 60.03 9.30 2.83

1032GapA 42.49 42.49 42.49 0.01 16.97 28.33 0.00 0.00 0.00 0.00 7.06
0.00 0.03 60.03 1.25 1.66

1132GapA 26.43 26.43 26.43 13.16 13.18 13.19 0.02 0.02 0.02 0.00 6.58
0.00 0.02 60.02 3.81 1.77

1232GapA 26.48 26.48 26.48 6.61 7.96 13.23 0.02 0.02 0.02 0.00 13.27
0.00 0.03 60.03 5.63 1.76

1332GapA 28.47 28.47 28.47 7.10 7.11 7.12 0.02 0.02 0.02 0.00 0.02
0.00 0.04 60.02 8.04 1.76

1432GapA 42.45 42.45 42.45 14.09 18.39 21.24 0.01 0.01 0.01 0.00 7.14
0.00 0.03 60.03 3.14 1.52

1532GapA 42.36 42.38 42.39 21.12 26.78 35.26 0.01 0.01 0.01 0.00 14.10
0.00 0.03 60.02 9.77 1.97

1632GapA 28.27 28.28 28.28 7.00 15.50 21.17 0.00 0.01 0.01 0.00 14.07
0.00 0.03 60.01 4.38 2.01

1832GapA 31.05 31.05 31.05 12.43 18.62 24.81 0.00 0.00 0.00 0.00 6.15
0.00 0.02 60.03 7.27 2.58

1932GapA 63.82 63.82 63.83 7.14 17.04 21.35 0.01 0.01 0.01 0.00 7.20
0.00 0.04 60.02 2.44 1.94

2032GapA 35.44 35.44 35.44 21.22 22.66 28.33 0.00 0.00 0.00 0.00 0.00
0.00 0.03 60.01 2.48 1440.03

2132GapA 35.46 35.46 35.46 7.04 11.31 21.24 0.00 0.00 0.00 0.00 14.28
0.00 0.03 60.04 11.66 1.33

2232GapA 33.03 33.03 33.03 6.58 11.84 19.73 0.00 0.00 0.00 0.00 6.72
0.00 0.03 60.02 8.55 1.38

2332GapA 33.16 33.16 33.16 13.28 22.51 26.46 0.00 0.00 0.00 0.00 0.11
0.00 0.03 60.02 11.54 1.28

2432GapA 42.66 44.07 49.73 0.01 5.66 7.09 0.01 0.01 0.01 0.00 0.14
0.00 0.04 60.02 8.58 1.43

2532GapA 42.61 45.45 49.72 7.05 11.35 14.23 0.00 0.00 0.00 0.00 0.00
0.00 0.04 60.02 3.74 2.29

2632GapA 21.19 21.19 21.19 21.19 21.19 21.19 0.00 0.00 0.00 0.00 7.05
0.00 0.01 60.01 4.26 1.96

2732GapA 63.65 63.65 63.65 35.36 41.00 42.42 0.00 0.00 0.00 0.00 14.18
0.00 0.03 60.02 4.97 4.25

2832GapA 49.54 49.54 49.54 14.15 18.40 35.37 0.00 0.00 0.00 0.00 0.00
0.00 0.02 60.02 1.94 1.92

2932GapA 46.30 46.30 46.31 6.67 17.20 32.98 0.00 0.00 0.00 0.00 13.23
0.00 0.03 60.02 2.71 4.58

3032GapA 42.52 42.52 42.52 7.06 16.97 28.33 0.01 0.01 0.01 0.00 7.08
0.00 0.04 60.04 22.57 3.20

3132GapA 33.10 34.42 39.72 6.57 10.58 19.81 0.00 0.00 0.00 0.00 0.04
0.00 0.03 60.02 14.31 3.18

3232GapA 6.68 6.68 6.68 0.01 4.00 6.66 0.00 0.00 0.00 0.00 6.71
0.00 0.02 60.03 14.83 1.44
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TABLE A2. Detailed numerical results for small GapB instances

gap (min/avg/max) % average runtime (s) gap% runtime (s)

Instances Layer 1 Layer 2 Layer 3 CPLEX Slope Scaling

431GapB 23.37 23.37 23.37 11.69 14.01 17.50 0.00 0.00 0.00 0.00 0.05
0.00 0.02 60.02 3.18 1.61

531GapB 27.59 27.59 27.59 10.98 16.52 22.02 0.02 0.02 0.02 0.00 5.53
0.00 0.03 60.03 6.64 1.82

931GapB 27.57 27.57 27.57 0.00 13.21 16.53 0.00 0.00 0.00 0.00 5.54
0.00 0.02 60.03 1.63 0.33

1031GapB 29.20 29.21 29.21 11.65 11.66 11.67 0.00 0.00 0.00 0.00 5.90
0.00 0.04 60.03 9.58 1.45

1231GapB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.01 60.02 1.95 2.28

1331GapB 15.72 15.76 15.77 0.03 1.07 5.24 0.02 0.02 0.02 0.00 5.30
0.00 0.02 60.03 16.70 3.26

1431GapB 23.39 23.40 23.40 5.89 11.70 17.53 0.00 0.00 0.00 0.00 5.85
0.00 0.02 60.03 3.46 2.10

1731GapB 23.41 23.41 23.41 5.86 7.03 11.68 0.00 0.00 0.00 0.00 5.97
0.00 0.03 60.03 5.63 1.43

2031GapB 16.56 19.87 22.08 10.99 11.02 11.04 0.00 0.00 0.00 0.00 5.51
0.00 0.02 60.03 2.72 0.92

2331GapB 24.75 24.75 24.75 6.20 12.38 24.75 0.00 0.00 0.00 0.00 6.31
0.00 0.02 60.01 1.55 3.05

2431GapB 31.05 31.05 31.05 6.22 11.17 18.63 0.02 0.02 0.03 0.00 0.07
0.00 0.03 60.02 3.73 1.87

2731GapB 19.95 19.95 19.95 6.63 7.96 13.24 0.02 0.02 0.02 0.00 0.02
0.00 0.03 60.02 4.44 3.64

2831GapB 22.10 24.30 27.62 5.57 9.95 11.05 0.02 0.03 0.04 0.00 5.57
0.00 0.02 60.04 1.99 2.04

2931GapB 49.58 49.58 49.58 24.75 30.95 37.15 0.00 0.00 0.00 0.00 0.00
0.00 0.03 60.02 1.37 1.28

3131GapB 43.32 43.32 43.32 6.15 14.81 18.52 0.02 0.02 0.02 0.00 6.16
0.00 0.04 60.03 7.01 2.23

3231GapB 17.50 17.50 17.50 17.49 17.49 17.49 0.02 0.02 0.02 0.00 5.84
0.00 0.01 60.02 0.96 1.41
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TABLE A3. Detailed numerical results for small GapC instances

gap (min/avg/max) % average runtime (s) gap% runtime (s)

Instances Layer 1 Layer 2 Layer 3 CPLEX Slope Scaling

333GapC 14.00 14.00 14.00 6.88 8.29 13.90 0.00 4.12 6.87 0.00 13.99
0.00 0.01 60.02 2.24 3.60

433GapC 14.03 14.03 14.03 14.00 14.01 14.03 0.01 1.39 6.92 0.00 7.05
0.00 0.01 60.02 107.01 4.14

533GapC 33.12 33.12 33.12 13.25 17.22 19.85 0.02 0.02 0.02 0.00 6.72
0.00 0.03 60.02 31.41 1.96

633GapC 39.71 39.71 39.71 19.86 22.50 26.48 0.02 0.02 0.02 0.00 0.05
0.00 0.02 60.02 5.52 1440.04

733GapC 31.15 31.15 31.16 0.07 9.99 18.71 0.02 0.02 0.02 0.00 0.06
0.00 0.03 60.02 87.39 2.31

833GapC 26.49 31.79 33.12 26.44 26.46 26.48 0.00 0.00 0.00 0.00 6.60
0.00 0.03 60.02 7.54 2.45

933GapC 19.86 19.86 19.86 0.04 4.00 6.66 0.00 0.00 0.00 0.00 0.07
0.00 0.02 60.02 5.37 1.09

1033GapC 55.94 55.94 55.94 6.18 19.90 31.06 0.00 0.00 0.00 0.00 6.29
0.00 0.03 60.02 12.38 4.65

1133GapC 37.35 37.35 37.35 6.26 9.99 12.47 0.02 0.02 0.02 0.00 0.11
0.00 0.04 60.02 29.23 2.34

1233GapC 28.24 28.24 28.24 14.09 14.09 14.09 0.01 0.01 0.01 0.00 7.11
0.00 0.01 60.03 6.34 2.63

1333GapC 18.63 18.63 18.63 12.50 12.50 12.50 0.02 0.02 0.02 0.00 0.06
0.00 0.01 60.02 81.97 3.86

1433GapC 19.88 19.88 19.88 13.26 13.26 13.27 0.02 0.02 0.02 0.00 6.59
0.00 0.02 60.03 96.85 2.45

1533GapC 19.91 19.91 19.91 6.73 11.95 13.31 0.00 0.00 0.00 0.00 6.69
0.00 0.02 60.02 13.17 1.74

1633GapC 28.34 28.34 28.34 7.08 9.91 21.25 0.00 0.00 0.00 0.00 14.16
0.00 0.02 60.02 19.40 1.15

1733GapC 28.38 32.64 35.49 14.17 14.18 14.19 0.02 0.02 0.02 0.00 0.10
0.00 0.03 60.02 46.68 3.47

1833GapC 39.69 39.69 39.69 19.80 23.79 33.05 0.02 1.33 6.60 0.00 6.61
0.00 0.03 60.01 51.91 1.74

1933GapC 29.13 29.13 29.13 5.82 10.43 11.59 0.02 0.04 0.07 0.00 0.02
0.00 0.03 60.03 7.20 1.58

2033GapC 31.08 31.08 31.08 0.02 8.71 18.66 0.02 0.02 0.02 0.00 0.06
0.00 0.04 60.02 98.58 1.52

2133GapC 26.45 26.45 26.45 13.16 13.19 13.21 0.02 0.02 0.02 0.00 6.60
0.00 0.02 60.03 10.69 3.83

2233GapC 56.80 56.80 56.80 7.15 17.05 21.32 0.01 0.01 0.01 0.00 7.08
0.00 0.04 60.03 5.17 4.10

2333GapC 28.32 28.32 28.32 28.30 28.30 28.30 0.00 0.00 0.00 0.00 0.00
0.00 0.02 60.02 33.57 1440.09

2433GapC 19.93 19.93 19.93 6.63 9.26 13.22 0.02 0.02 0.02 0.00 6.67
0.00 0.02 60.02 11.51 1.86

2533GapC 42.41 42.41 42.41 14.26 19.81 21.25 0.00 0.00 0.00 0.00 7.04
0.00 0.03 60.02 2.12 1.90

2633GapC 18.65 18.65 18.65 0.02 4.98 6.24 0.01 0.01 0.01 0.00 0.06
0.00 0.02 60.01 10.58 0.68

2733GapC 26.46 31.75 33.07 0.06 11.90 19.88 0.00 0.00 0.00 0.00 6.63
0.00 0.03 60.03 33.25 2.20

2833GapC 39.69 39.69 39.69 13.21 21.14 26.45 0.01 0.01 0.01 0.00 6.65
0.00 0.03 60.03 12.48 2.58

2933GapC 35.44 35.44 35.45 14.13 18.42 21.33 0.02 0.02 0.02 0.00 0.02
0.00 0.03 60.02 1.80 2.40

3033GapC 37.25 37.25 37.25 12.37 16.10 18.61 0.00 0.00 0.00 0.00 0.05
0.00 0.04 60.02 28.37 2.04

3133GapC 28.36 28.36 28.36 0.06 14.19 28.33 0.01 0.01 0.01 0.00 0.05
0.00 0.02 60.03 81.40 2.51

3233GapC 30.41 30.41 30.41 15.16 15.17 15.20 0.00 0.00 0.00 0.00 7.61
0.00 0.01 60.02 3.00 3.26
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TABLE A4. Detailed numerical results for larger MGapA instances

gap (min/avg/max) % average runtime (s) gap% runtime (s)

Instances Layer 1 Layer 2 Layer 3 CPLEX Slope Scaling

MGapA0 31.00 32.24 37.19 24.71 24.72 24.74 12.38 12.38 12.38 0.00 0.11
0.00 0.04 60.07 1818.95 17.46

MGapA3 40.90 40.91 40.91 11.71 14.05 17.56 0.07 0.07 0.07 0.00 0.04
0.00 0.07 60.03 621.89 15.79

MGapA5 43.37 43.37 43.37 18.53 22.28 30.93 0.04 0.04 0.04 0.00 12.46
0.00 0.05 60.04 425.73 7.62

MGapA6 32.85 32.85 32.85 16.34 16.35 16.35 5.35 5.37 5.38 0.00 5.41
0.00 0.03 60.06 161.69 15.21

MGapA9 46.29 46.29 46.29 32.95 34.33 39.65 13.20 13.21 13.22 0.00 6.63
0.00 0.06 60.05 190.81 6.73

MGapA10 49.35 49.36 49.36 24.68 30.83 37.01 6.18 11.08 12.31 0.00 6.17
0.00 0.05 60.03 23.21 9.40

MGapA12 21.97 21.97 21.97 10.95 15.34 21.92 0.00 0.00 0.00 0.00 5.56
0.00 0.04 60.07 326.17 5.07

MGapA13 5.73 5.73 5.73 0.00 3.38 5.73 0.00 0.00 0.00 0.00 5.88
0.00 0.02 60.05 908.03 12.62

MGapA17 43.23 43.23 43.24 18.48 22.20 30.83 6.09 6.09 6.09 0.00 6.26
0.00 0.04 60.02 391.05 12.37

TABLE A5. DetailStrabed numerical results for larger MGapB instances

gap (min/avg/max) % average runtime (s) gap% runtime (s)

Instances Layer 1 Layer 2 Layer 3 CPLEX Slope Scaling

MGapB0 39.71 39.71 39.71 6.65 14.60 19.92 0.02 0.03 0.04 0.00 0.16
0.00 0.06 60.03 356.64 8.00

MGapB2 33.14 33.14 33.14 13.20 18.54 26.47 0.00 0.01 0.04 0.00 6.67
0.00 0.04 60.03 2449.02 9.40

MGapB3 63.60 63.60 63.60 21.08 23.91 28.15 14.02 14.02 14.02 0.00 14.11
0.00 0.09 60.07 109.80 1440.11

MGapB4 52.67 52.67 52.67 19.60 24.91 39.44 6.36 6.36 6.36 0.00 0.02
0.00 0.07 60.05 259.86 8.27

MGapB5 49.21 49.21 49.21 27.94 30.81 35.02 13.88 15.28 20.90 0.00 13.98
0.00 0.07 60.05 56.50 3.95

MGapB6 39.58 39.58 39.58 13.06 17.04 19.75 0.00 3.82 6.43 0.00 6.57
0.00 0.06 60.02 349.88 12.99

MGapB9 66.06 66.06 66.06 19.74 29.03 39.58 0.02 2.64 6.58 0.00 13.19
0.00 0.07 60.07 682.00 12.96

MGapB10 32.92 32.92 32.92 13.10 14.43 19.69 6.49 6.50 6.54 0.00 13.19
0.00 0.04 60.04 186.10 13.50

MGapB11 78.01 78.01 78.01 14.31 28.42 35.52 14.20 14.20 14.20 0.00 7.20
0.00 0.09 60.03 630.15 8.22

MGapB14 43.49 43.49 43.49 6.18 12.37 18.54 0.00 0.00 0.00 0.00 0.03
0.00 0.05 60.07 1634.07 12.22

MGapB16 26.29 26.29 26.29 0.00 9.16 13.13 0.00 0.00 0.00 0.00 6.64
0.00 0.04 60.04 587.66 15.07

MGapB19 37.14 37.15 37.15 0.00 13.60 24.70 0.00 0.00 0.00 0.00 6.35
0.00 0.06 60.08 565.93 13.43
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TABLE A6. Detailed numerical results for larger MGapC instances

gap (min/avg/max) % average runtime (s) gap% runtime (s)

Instances Layer 1 Layer 2 Layer 3 CPLEX Slope Scaling

MGapC0 31.10 33.59 37.32 12.41 14.89 18.62 0.05 0.05 0.05 0.00 6.21
0.00 0.08 60.06 1677.23 8.24

MGapC1 24.88 24.88 24.88 12.44 16.17 18.67 0.04 0.04 0.04 0.00 6.42
0.00 0.03 60.07 2987.68 12.64

MGapC3 52.94 52.94 52.94 19.82 22.49 26.49 0.06 0.07 0.13 0.00 13.28
0.00 0.07 60.06 1389.84 12.73

MGapC4 53.16 53.16 53.16 13.37 22.59 26.59 6.75 6.75 6.75 0.00 6.76
0.00 0.08 60.03 2153.55 10.07

MGapC5 26.33 26.33 26.33 6.47 10.53 19.75 0.00 0.00 0.00 0.00 0.11
0.00 0.04 60.05 502.36 9.86

MGapC7 21.27 21.27 21.27 21.26 21.26 21.26 7.19 12.78 14.18 0.00 7.17
0.00 0.02 60.07 591.97 23.55

MGapC10 63.63 63.63 63.63 14.15 25.40 28.23 7.09 7.09 7.09 0.00 7.19
0.00 0.07 60.05 19.02 6.68

MGapC11 13.24 13.24 13.24 6.65 9.24 13.12 0.00 0.00 0.00 0.00 6.62
0.00 0.03 60.05 536.81 7.48

MGapC12 46.16 46.16 46.16 13.13 26.37 39.51 6.52 6.53 6.54 0.00 19.81
0.00 0.07 60.05 58.69 10.04

MGapC16 21.14 21.15 21.15 7.00 15.44 21.08 0.00 2.74 6.92 0.00 0.05
0.00 0.06 60.05 103.81 12.61
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TABLE A7. Detailed numerical results for the industrial problem

gap (min/avg/max) % average runtime (s) gap% runtime (s)

Instances Layer 1 Layer 2 Layer 3 CPLEX (24 min) CPLEX (2 h) Slope Scaling

S(1,1,1) 9.57 9.65 9.76 1.00 2.95 4.67 0.15 0.49 0.69 0.01 0.01 4.01
0.00 0.32 1440.33 1440.01 7200.01 0.12

S(1,1,2) 10.66 10.74 10.85 0.08 2.48 4.30 0.03 0.04 0.05 0.01 0.01 0.96
0.00 0.30 1440.37 7.22 6.60 0.11

S(1,2,1) 9.08 9.12 9.13 0.84 2.86 4.24 0.43 0.44 0.44 0.01 0.01 3.59
0.00 0.24 1440.36 1440.02 7200.01 0.14

S(1,2,2) 10.36 10.37 10.37 0.12 3.30 4.69 0.01 0.03 0.03 0.01 0.01 1.08
0.00 0.29 1440.17 4.67 5.07 0.13

S(2,1,1) 11.36 11.43 11.51 0.83 3.48 5.59 0.17 0.43 0.58 0.03 0.01 4.04
0.00 0.32 1440.44 1440.01 7200.01 1440.00

S(2,1,2) 12.29 12.35 12.45 0.06 3.10 5.29 0.02 0.03 0.05 0.01 0.01 0.34
0.00 0.30 1440.38 4.66 3.94 0.09

S(2,2,1) 10.87 10.89 10.90 0.70 3.38 5.18 0.35 0.36 0.37 0.01 0.01 1.98
0.00 0.23 1440.40 1440.02 7200.01 1440.01

S(2,2,2) 11.96 11.97 11.97 0.10 4.08 5.57 0.02 0.03 0.04 0.01 0.01 0.52
0.00 0.29 1440.35 3.67 3.83 0.10

M(1,1,1) 6.04 6.56 6.87 1.98 3.05 4.68 1.06 1.34 1.72 0.22 0.11 5.05
0.01 5.95 1445.48 1440.03 7200.09 1440.03

M(1,1,2) 8.63 8.88 9.20 2.68 2.78 2.90 0.40 0.54 0.66 0.38 0.32 4.06
0.00 5.13 1442.84 1440.12 7200.04 3.83

M(1,2,1) 5.84 6.49 7.43 2.57 3.02 3.30 0.94 1.13 1.34 0.60 0.22 3.33
0.01 6.85 1446.05 1440.12 7200.09 1440.58

M(1,2,2) 8.34 8.55 8.90 2.15 2.75 3.29 0.65 0.70 0.75 0.74 0.35 4.51
0.01 6.29 1441.69 1440.03 7200.07 1440.10

M(2,1,1) 8.57 9.02 9.29 2.46 3.34 3.63 0.79 1.08 1.45 0.18 0.07 3.16
0.01 6.62 1442.16 1440.11 7200.05 17.10

M(2,1,2) 11.69 11.91 12.20 4.21 4.48 5.35 0.62 0.94 1.17 0.70 0.33 2.88
0.00 4.47 1444.28 1440.11 7200.11 5.78

M(2,2,1) 7.22 8.21 9.67 2.11 2.91 3.96 0.90 1.17 1.36 0.36 0.16 2.68
0.01 5.54 1445.00 1440.04 7200.05 31.31

M(2,2,2) 11.19 11.38 11.69 1.53 3.13 4.26 0.56 0.82 1.04 0.90 0.38 2.90
0.01 6.51 1444.07 1440.07 7200.03 9.32

L(1,1,1) 11.98 12.33 12.69 4.04 5.23 6.20 2.05 2.46 2.81 27.40 2.56 3.94
0.03 25.23 1451.13 1440.10 7200.19 1440.41

L(1,1,2) 11.29 11.67 12.01 2.76 5.61 11.58 1.76 1.99 2.14 43.17 2.82 4.16
0.03 19.81 1447.65 1440.24 7200.08 1440.51

L(1,2,1) 11.56 12.31 12.71 4.44 4.97 5.51 2.32 3.02 3.65 26.36 3.35 4.37
0.03 34.97 1461.73 1440.18 7200.26 1440.49

L(1,2,2) 12.12 12.30 12.46 4.52 5.00 5.52 2.42 2.53 2.79 52.16 4.50 3.89
0.02 21.47 1450.31 1440.28 7200.24 1441.00

L(2,1,1) 12.51 12.82 13.15 4.14 5.02 6.09 2.38 2.56 2.74 38.69 1.59 3.76
0.03 21.01 1458.52 1440.14 7200.09 1440.71

L(2,1,2) 12.49 12.83 13.14 3.40 4.85 6.53 2.05 2.40 2.98 47.82 1.44 3.46
0.03 19.55 1462.06 1440.07 7200.24 574.33

L(2,2,1) 10.85 12.67 13.32 4.34 5.90 7.58 2.41 2.91 3.27 10.14 2.80 4.01
0.03 27.43 1446.48 1440.13 7200.20 1440.28

L(2,2,2) 13.31 13.47 13.61 4.30 5.19 5.99 2.54 2.99 3.49 66.14 2.72 4.01
0.02 20.70 1455.02 1440.21 7200.14 710.91

R(1,1,1) 12.10 12.74 14.27 5.22 5.68 5.99 3.42 3.94 4.33 74.16 57.17 5.21
0.10 56.32 1466.50 1440.58 7200.26 1440.01

R(1,1,2) 14.33 14.84 15.29 5.33 5.76 6.07 4.06 4.27 4.62 294.26 78.37 4.62
0.09 78.21 1485.24 1440.10 7200.65 1440.29

R(1,2,1) 12.36 13.04 14.06 5.93 6.40 6.95 3.89 4.35 5.05 79.38 56.96 5.39
0.10 42.42 1520.18 1440.49 7200.20 1440.54

R(1,2,2) 14.66 14.96 15.34 6.13 7.16 9.39 4.31 4.77 5.28 112.53 87.61 6.26
0.08 45.38 1480.06 1440.19 7200.46 1218.47

R(2,1,1) 13.40 13.79 14.41 5.59 6.11 6.55 4.55 5.10 5.96 86.19 67.45 4.15
0.10 67.08 1475.84 1440.60 7200.50 1440.61

R(2,1,2) 14.70 15.06 15.36 6.53 7.02 7.37 4.83 5.35 6.08 111.21 19.03 5.06
0.10 77.00 1465.79 1440.61 7200.19 578.64

R(2,2,1) 12.78 13.33 13.91 6.09 6.79 7.52 4.83 5.14 5.58 86.88 15.89 4.84
0.10 40.68 1480.86 1440.47 7200.27 1440.62

R(2,2,2) 15.15 15.52 16.13 6.91 7.31 7.64 5.25 6.07 6.59 134.46 11.91 5.59
0.09 66.27 1483.59 1440.44 7200.21 1440.77
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